Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A second monoclinic polymorph of 2-amino-4,6-dichloropyrimidine

Hoong-Kun Fun, ${ }^{\text {a* }}$ Suchada Chantrapromma, ${ }^{\text {b }} \ddagger$ Subrata Jana, ${ }^{\text {c }}$ Rinku Chakrabarty ${ }^{\text {c }}$ and Shyamaprosad Goswami ${ }^{\text {c }}$
${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {b }}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ${ }^{\text {c }}$ Department of Chemistry, Bengal Engineering and Science University', Shibpur, Howrah, India 711103
Correspondence e-mail: hkfun@usm.my

Received 25 July 2008; accepted 27 July 2008
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.098$; data-to-parameter ratio $=15.4$.

The title chloro-substituted 2-aminopyrimidine, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{3}$, is a second monoclinic polymorph of this compound which crystallizes in the space group $C 2 / c$. The structure was previously reported [Clews \& Cochran (1948). Acta Cryst. 1, $4-11]$ in the space group $P 21 / a$. There are two crystallographically independent molecules in the asymmetric unit and each molecule is planar. The dihedral angle between the two pyrimidine rings is $30.71(12)^{\circ}$. In the crystal structure, molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds, forming infinite one-dimensional chains along the a axis. These hydrogen bonds generate $R_{2}^{2}(8)$ ring motifs. The chains are stacked along the b axis.

Related literature

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: the polymorph reported by Clews \& Cochran (1948); Low et al. (2002). For applications of pyrimidine compounds and their supramolecular chemistry, see, for example: Blackburn \& Gait (1996); Brown (1988); Hurst (1980); Goswami et al. (2008a,b); Ligthart et al. (2005); Sherrington \& Taskinen (2001).

[^0]
Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{3}$
$V=2539.6(6) \AA^{3}$
$M_{r}=163.99$
$Z=16$
Monoclinic, C2/c
Mo $K \alpha$ radiation
$a=32.060$ (4) A
$\mu=0.92 \mathrm{~mm}^{-1}$
$b=3.8045$ (6) A
$T=296$ (2) K
$c=21.302$ (3) \AA
$0.57 \times 0.14 \times 0.02 \mathrm{~mm}$
$\beta=102.193$ (7)

Data collection

Bruker SMART APEX2 CCD area detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.620, T_{\text {max }}=0.985$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 187$ parameters
$w R\left(F^{2}\right)=0.098$
$S=1.02$
2886 reflections

All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 A-\mathrm{H} 2 N A \cdots \mathrm{~N} 1 A^{\mathrm{i}}$	$0.75(3)$	$2.43(3)$	$3.172(3)$	$176(2)$
$\mathrm{N} 3 A-\mathrm{H} 1 N A \cdots \mathrm{~N} 2 B^{\mathrm{i}}$	$0.87(3)$	$2.33(3)$	$3.201(3)$	$172(2)$
$\mathrm{N} 3 B-\mathrm{H} 1 N B \cdots \mathrm{~N} 2 A^{\mathrm{i}}$	$0.87(3)$	$2.39(3)$	$3.253(4)$	$174(3)$
$\mathrm{N} 3 B-\mathrm{H} 2 N B \cdots \mathrm{~N} 1 B^{\mathrm{ii}}$	$0.84(3)$	$2.41(3)$	$3.242(3)$	$172(3)$

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

SJ, RC and SG acknowledge the DST [SR/S1/OC-13/2005] and CSIR [01(1913)/04/EMR-II], Government of India for financial support. SJ and RC thank the CSIR, Government of India, for research fellowships. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the

IUCr electronic archives (Reference: SJ2524)

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blackburn, G. M. \& Gait, M. J. (1996). Nucleic Acids in Chemistry and Biology. Editors. Oxford University Press
Brown, D. J. (1988). Fused Pyrimidines The Chemistry of Heterocyclic Compounds, Vol. 24, pt. 3. New York: John Wiley \& Sons.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Clews, C. J. B. \& Cochran, W. (1948). Acta Cryst. 1, 4-11.
Goswami, S., Jana, S., Das, N. K., Fun, H.-K. \& Chantrapromma, S. (2008a). J. Mol. Struct. 876, 313-321.

organic compounds

Goswami, S., Jana, S., Hazra, A., Fun, H.-K. \& Chantrapromma, S. (2008b). Supramol. Chem. 20, 495-500.
Hurst, D. T. (1980). Chemistry and Biochemistry of Pyrimidines, Purines, Pteridines. Chichester: Wiley.
Ligthart, G. B. W. L., Ohkawa, H., Sijbesma, R. P. \& Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 810-811.

Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. \& Glidewell, C. (2002). Acta Cryst. C58, o289-o294.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sherrington, D. C. \& Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83-93. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

A second monoclinic polymorph of 2-amino-4,6-dichloropyrimidine

H.-K. Fun, S. Chantrapromma, S. Jana, R. Chakrabarty and S. Goswami

Comment

Functionalized pyrimidines play a major role in the synthesis of different drug molecules and of naturally occurring pyrimidine bases (Blackburn \& Gait, 1996; Brown, 1988; Hurst, 1980). Substituted pyrimidines are also very important for studies on multiple hydrogen bonding interactions in molecular recognition and supramolecular chemistry (Sherrington \& Taskinen, 2001; Goswami et al., 2008a,b; Ligthart et al., 20050). In this work we report the crystal structure of the title compound, Fig 1, which is a second monoclinic polymorph of 2-amino-4,6-dichloropyrimidine.

The crystal structure of the title compound (I) was previously reported by Clews \& Cochran (1948) in the monoclinic space group $P 21 / \mathrm{a}$, with $\mathrm{a}=16.447, \mathrm{~b}=3.845, \mathrm{c}=10.283 \AA, \beta=107.58^{\circ}$ and $Z=4$. In the present work, the compound crystallized out in the monoclinic space group $C 2 / \mathrm{c}$ with $Z=16$. There are two crystallographically independent molecules in the asymmetric unit, A and B, (see Fig. 1) with slightly different bond lengths and bond angles. Both molecules A and B are planar with maximum deviations of 0.005 (2) \AA for atom N 2 A in A and 0.009 (2) \AA for atom C2B in B. The dihedral angle between the two pyrimidine rings is 30.71 (12) ${ }^{\circ}$. The amino group acts as a double donor in $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, while the two ring N atoms (N 1 and N 2) act as the acceptors. The molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds to form infinite one-dimensional chains along the a axis, Table 1 . These hydrogen bonds generate $R^{2}{ }_{2}(8)$ ring motifs (Bernstein at al., 1995) (Fig. 2). Interestingly, the Cl atoms do not form $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The closest $\mathrm{Cl} \cdots \mathrm{Cl}$ distance is 3.3635 (11) \AA [$3.37 \AA$ in Clews \& Cochran (1948)]. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and comparable to those found in related structures (Clews \& Cochran, 1948; Low et al., 2002).

In the crystal packing shown in Fig. 2, the $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ molecular chains are stacked along the b axis.

Experimental

Phosphorus oxy-chloride $\left(\mathrm{POCl}_{3}\right)(25 \mathrm{ml})$ was added to anhydrous 2-amino-4,6-dioxopyrimidine $(6 \mathrm{~g})$ and the mixture refluxed at 383 K for 12 h . Excess POCl_{3} was distilled off. The solid residue was neutralized using KOH solution in an ice bath and saturated NaHCO_{3} solution was added. The solid residue was filtered off, extracted with CHCl_{3} and the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under vacuum. The crude product was purified by column chromatography using 20% ethyl acetate in petroleum ether as eluent and the title compound (I) ($4.29 \mathrm{~g}, 61 \%$) was isolated. Single crystals were grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethanol ($v / v 3: 1$) solution, $\mathrm{Mp} .492-494 \mathrm{~K}$.

Refinement

All H atoms were located in a difference map and freely refined isotropically. The highest residual electron density peak is located at $1.00 \AA$ from N2A and the deepest hole is located at $0.81 \AA$ from H2NA.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The crystal packing of (I), viewed approximately along the b axis showing one-dimensional chains along the a axis. Hydrogen bonds were shown as dashed lines.

A second monoclinic polymorph of 2-amino-4,6-dichloropyrimidine

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{3}$
$M_{r}=163.99$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=32.060$ (4) \AA
$b=3.8045$ (6) \AA
$c=21.302(3) \AA$
$\beta=102.193(7)^{\circ}$
$V=2539.6(6) \AA^{3}$
$Z=16$
$F_{000}=1312$
$D_{\mathrm{x}}=1.716 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=492-494 \mathrm{~K}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2886 reflections
$\theta=1.3-27.5^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, colorless
$0.57 \times 0.14 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 8.33 pixels mm^{-1}
$T=296(2) \mathrm{K}$
2886 independent reflections
1875 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=1.3^{\circ}$
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.620, T_{\text {max }}=0.985$
$h=-40 \rightarrow 40$
$k=-4 \rightarrow 4$
$l=-27 \rightarrow 27$
12772 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.098$
$S=1.02$
2886 reflections
187 parameters

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0403 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Cl1A	$0.330814(19)$	$0.45738(18)$	$0.35093(3)$	$0.0475(2)$
C12A	$0.49584(2)$	$0.5271(2)$	$0.33992(4)$	$0.0572(2)$
N1A	$0.46421(6)$	$0.7708(5)$	$0.43348(9)$	$0.0371(5)$
N2A	$0.38986(6)$	$0.7401(5)$	$0.43849(9)$	$0.0349(5)$
N3A	$0.43941(8)$	$0.9927(7)$	$0.51907(11)$	$0.0490(6)$
H2NA	$0.4619(8)$	$1.056(7)$	$0.5293(12)$	$0.033(8)^{*}$
H1NA	$0.4174(9)$	$1.026(7)$	$0.5366(14)$	$0.057(9)^{*}$
C1A	$0.38306(7)$	$0.5786(6)$	$0.38271(11)$	$0.0338(6)$
C2A	$0.41389(8)$	$0.5008(7)$	$0.34867(12)$	$0.0377(6)$
H2A	$0.4102(7)$	$0.386(6)$	$0.3120(11)$	$0.034(7)^{*}$
C3A	$0.45423(7)$	$0.6088(7)$	$0.37766(11)$	$0.0353(6)$
C4A	$0.43110(7)$	$0.8296(7)$	$0.46279(11)$	$0.0350(6)$
C11B	$0.58263(2)$	$1.02542(19)$	$0.31034(3)$	$0.0510(2)$
C12B	$0.73894(2)$	$0.50031(18)$	$0.32094(3)$	$0.0474(2)$
N1B	$0.71199(6)$	$0.7404(6)$	$0.41918(9)$	$0.0389(5)$
N2B	$0.64127(6)$	$0.9690(6)$	$0.41463(9)$	$0.0406(5)$
N3B	$0.69119(9)$	$0.9534(8)$	$0.50908(11)$	$0.0589(7)$
H1NB	$0.6706(10)$	$1.049(8)$	$0.5237(16)$	$0.080(12)^{*}$

H2NB	$0.7156(10)$	$0.881(9)$	$0.5264(16)$	$0.075(11)^{*}$
C1B	$0.63348(7)$	$0.9103(6)$	$0.35235(12)$	$0.0364(6)$
C2B	$0.66172(7)$	$0.7709(7)$	$0.31888(11)$	$0.0374(6)$
H2B	$0.6550(7)$	$0.753(7)$	$0.2743(12)$	$0.047(7)^{*}$
C3B	$0.70066(7)$	$0.6887(7)$	$0.35702(11)$	$0.0361(6)$
C4B	$0.68134(8)$	$0.8851(7)$	$0.44634(11)$	$0.0403(6)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11A	$0.0320(3)$	$0.0586(5)$	$0.0491(4)$	$-0.0065(3)$	$0.0027(3)$	$-0.0029(3)$
C12A	$0.0442(4)$	$0.0698(5)$	$0.0658(5)$	$-0.0003(4)$	$0.0298(3)$	$-0.0132(4)$
N1A	$0.0293(10)$	$0.0422(13)$	$0.0402(11)$	$0.0003(10)$	$0.0086(9)$	$-0.0014(11)$
N2A	$0.0295(10)$	$0.0416(13)$	$0.0339(10)$	$0.0028(10)$	$0.0073(8)$	$-0.0013(10)$
N3A	$0.0351(14)$	$0.0707(19)$	$0.0418(13)$	$-0.0073(14)$	$0.0093(11)$	$-0.0161(13)$
C1A	$0.0293(12)$	$0.0320(14)$	$0.0385(13)$	$-0.0009(11)$	$0.0040(10)$	$0.0039(11)$
C2A	$0.0378(14)$	$0.0402(16)$	$0.0355(13)$	$-0.0012(13)$	$0.0087(11)$	$-0.0057(13)$
C3A	$0.0338(13)$	$0.0354(14)$	$0.0396(13)$	$0.0033(12)$	$0.0141(10)$	$0.0001(12)$
C4A	$0.0327(13)$	$0.0404(15)$	$0.0315(12)$	$-0.0020(12)$	$0.0060(10)$	$0.0013(12)$
C11B	$0.0344(4)$	$0.0669(5)$	$0.0514(4)$	$0.0072(4)$	$0.0083(3)$	$0.0056(4)$
C12B	$0.0358(3)$	$0.0566(4)$	$0.0546(4)$	$-0.0001(3)$	$0.0204(3)$	$-0.0103(3)$
N1B	$0.0355(11)$	$0.0438(13)$	$0.0386(11)$	$0.0036(11)$	$0.0109(9)$	$0.0016(10)$
N2B	$0.0388(12)$	$0.0481(14)$	$0.0377(11)$	$0.0044(11)$	$0.0143(9)$	$0.0001(11)$
N3B	$0.0534(17)$	$0.087(2)$	$0.0368(13)$	$0.0187(16)$	$0.0102(12)$	$-0.0034(13)$
C1B	$0.0315(13)$	$0.0386(15)$	$0.0407(13)$	$0.0001(12)$	$0.0112(10)$	$0.0014(12)$
C2B	$0.0352(14)$	$0.0465(17)$	$0.0328(13)$	$-0.0025(13)$	$0.0123(11)$	$-0.0036(13)$
C3B	$0.0329(13)$	$0.0369(15)$	$0.0416(14)$	$-0.0031(12)$	$0.0151(11)$	$-0.0009(12)$
C4B	$0.0398(15)$	$0.0477(16)$	$0.0352(13)$	$0.0043(13)$	$0.0122(11)$	$0.0023(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

C11A-C1A	$1.731(2)$
C12A-C3A	$1.725(2)$
N1A-C3A	$1.317(3)$
N1A-C4A	$1.359(3)$
N2A-C1A	$1.314(3)$
N2A-C4A	$1.357(3)$
N3A-C4A	$1.326(3)$
N3A-H2NA	$0.75(2)$
N3A-H1NA	$0.87(3)$
C1A-C2A	$1.376(3)$
C2A-C3A	$1.373(3)$
C2A-H2A	$0.88(2)$
C3A-N1A-C4A	$115.3(2)$
C1A-N2A-C4A	$115.11(19)$
C4A-N3A-H2NA	$114(2)$
C4A-N3A-H1NA	$115.4(19)$
H2NA-N3A-H1NA	$130(3)$

C11B-C1B	$1.742(2)$
C12B-C3B	$1.735(2)$
N1B-C3B	$1.312(3)$
N1B-C4B	$1.358(3)$
N2B-C1B	$1.316(3)$
N2B-C4B	$1.357(3)$
N3B-C4B	$1.332(3)$
N3B-H1NB	$0.87(3)$
N3B-H2NB	$0.84(3)$
C1B-C2B	$1.372(3)$
C2B-C3B	$1.374(3)$
C2B-H2B	$0.93(2)$
C3B-N1B-C4B	$114.8(2)$
C1B-N2B-C4B	$114.9(2)$
C4B-N3B-H1NB	$114(2)$
C4B-N3B-H2NB	$112(2)$
H1NB-N3B-H2NB	$134(3)$

sup-4

supplementary materials

$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$125.2(2)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$116.12(18)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$118.68(19)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$114.3(2)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	$118.9(14)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	$126.7(15)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$124.9(2)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	$116.14(18)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$118.95(19)$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$117.1(2)$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$117.7(2)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$125.2(2)$

$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$125.7(2)$
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$115.67(18)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$118.62(19)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$113.4(2)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	$121.6(15)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	$124.8(14)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$125.9(2)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{Cl} 2 \mathrm{~B}$	$115.99(17)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$	$118.12(18)$
$\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	$116.9(2)$
$\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$117.8(2)$
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$125.3(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3A—H2NA $\cdots \mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}$	$0.75(3)$	$2.43(3)$	$3.172(3)$	$176(2)$
N3A—H1NA $\cdots \mathrm{N} 2 \mathrm{~B}^{\mathrm{i}}$	$0.87(3)$	$2.33(3)$	$3.201(3)$	$172(2)$
N3B—H1NB $\cdots \mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	$0.87(3)$	$2.39(3)$	$3.253(4)$	$174(3)$
N3B—H2NB $\cdots \mathrm{N} 1 \mathrm{~B}^{\mathrm{ii}}$	$0.84(3)$	$2.41(3)$	$3.242(3)$	$172(3)$
Symmetry codes: (i) $-x+1,-y+2,-z+1 ;($ (ii $)-x+3 / 2,-y+3 / 2,-z+1$.				

supplementary materials

Fig. 1

Fig. 2

[^0]: \ddagger Additional correspondence author, email: suchada.c@psu.ac.th.

